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1. Introduction 

The scheme to produceT at Fermilab includes an Accumulator 

where antiprotons are RF stacked and cooled with the electron 

cooling technique. For several conditions discussed in the design 
Cl> 

report, the beam energy in the accumulater ring is chosen to be 

several hundred millions of electron volts. 

Toward the end of the process, when large number of p have 

been accumulated (Ni;XO"), two major effects counteract each other 

in determining the final beam emittances: one is the e- -cooling 

itself which would cause the emittances. to match the e-beam 

temperature., the other is the intra-beam scat.te.ring which would 

cause a decrease of the final density. Both these effects result 

from the Coulomb interaction among particles of the same charge. 

The e-beam cooling, though is localized in a small region where as 

the intra-beam scattering is spread all around the storage ring. 

If we assume that the motion of a particle looks like that of 

a harmonic ocillator, we can regard a F beam as an isolated system 
CS 

of N three-dimensional harmonic oscillators which experience many 

random collisions among themselves and periodically take a "cold 

electron bath", as represented schematically in Fig. 1. 

The phase space volume of such a system decreases due to collision 

with " cold " electrons in the cooling region. But in the rest of 

the storage ring it will increase due to the interaction among 

themselves. We expect an equilibrium for the volume of the 

system(F gas) will be reached over sometime characteristic of the 
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Fig. 1 
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two processes we have described. 
*c&Is efecfron bath 

In following subsections 2-a-2-d, we discuss the behavior of 

an individual particle in the emittance space and derive the 

evolution'eq'uations for beam emittances. In subsection 2-e, 

numerical methods to solve non-linear evolution equations are 

exposed. In the final section, we will obtain the equilibrium 

emittances and the relaxation times, that are the times it takes 

for the F beam to reach the equilibrium, for different ring 

parameters. We sha.11 cosider only the case of an unbunched beam. 

2. 7 Beam affected by Electron Cooling and Intra-Beam Scattering 

2-a Equations of motion for an individual paticle 

Taking into account both effects of collisions with "cold" 

electrons and other 7s , we can write equations of motion for an 

individual particle as follows: 

*F+ lc#cQ~; = n',s; +f D~b(~~~i -(~=)*~=~~~ ho- C(PF)i-(~~j)x 
rJ pp 

'$2 Kyqj; = F D+$;' (WByg I, m,);-(*g;)$ 

i; z 
(2-l) 

5 
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with #XT = hyd7 ) 

where the index ,ti" refers to the i-th z, a prime meansthe orbit 

derivative, a dot means the time derivative, K,(s) and KY(s) are 

the periodic lattice filnctions for horizontal and vertical 

directions; 'n(s) is the periodical bending function,, x and y are 

the excursions from the design orbit for horizontal and vertical 

directions, & is the momentum deviation (z ap/p )I 

D&0$3; -Me), 1 is the Coulomb force due to the interaction with 

the k-th electron, and 1~7 ((27); -(XI&~ ) is the Coulomb force due 

to the interaction with the j-th F. 

The analysis of Eq.(2-1) taking into account both effects has 

never been attempted before. It is possible to transform the 

Abeam interaction terms in Eq.(2-1) as equivalent to a friction 
(31 

force. The second terms, caused by intera-beam scatterings, have 
(41 

been approximated by Piwinski in a set of equations which relate 

beam height, width and momentum spread. 

Our goal is to combine the two approaches together, so we 

could ivestigate the behavior of a F beam under both effects. 

To do so, we choose first to derive the variation of betatron 

emittances and longitudinal emittance (the momentum deviation) of 

a single particle after one pass through the cooling region. 

2-b Variation of single particle emittances due to <-cooling 

In the linear approximation, the excursion of a test particle 

from the design orbit is described by two terms 

(2-Z) 
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where L stands for either :i or y as we shall always adopt in the 

foliowing. In particular the betatron motion around the 

orbit ! yS(.s)*s ) is well known to have an invariant 

One obtains also an invariant for the longitudinal motion. 

case of an unbunched beam, one chooses 

J-s= s’ 
In a typical electron cooling ring, the phase advance 

closed 

(2-Z) 

In the 

(2-4) 

across 

the cooling region is usually small, and the orbit functions of 

&, 73anddpdo not change appreciably. Therefore these can be 

assumed as constant and will be denoted with an asterisk(*) to 

show their values in that region. Also, the effect of the 

friction force which the antiproton experiences as traversing the 

electron beam can be thought as lumped. The friction force 

components in the laboratory frame are: 

x’ (2-5) 
( e,' + Y:‘f t$ 

where c is the.velocity of light, e is the unit charge , m is the 

rest mass of an electron, P and rare the relativistic quantities 

of the electron, n is the density of the electron beam, L is the 

Coulomb log I &and 8/l are the relative spreads of the transverse 

and longitudinal velocities of the electron beam, z'(x'or y') and 
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i are the transverse and longitudinal momenta of the anti;roton. 

The variations of the momentum components after one crossing are 

(2-7) 

where 2 is the length of the cooling region and M is the rest mass 

of an antiproton. 

Using the Eqs.(2-3),(2-4) for the emittances and Eqs.(2-7) , 

(2-81, we can easily derive the variations of the betatron and 

longitudinal emittances every turn. Here we assume T'='$d*=O and 
(5, 

neglect the second order terms for Ap, and As . We have 

Moreover putting Eqs.(2-5),(2-6) into 

averaging them over one betatron period, we 

(Z-9) 

(2-10) 

Eqs.(2-9),(2-10) and 

obtain approximately 

the representations for variations of the betatron and 

longitudinal emittances 

AT, = e:+ 2 erl 
7 (2-12) 

with 
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,-.qhere r, and rp are the classical radius of an electron and an 

snti.?roton, Je is the current density of the electron beam. 

Next, averaging&J, and AJ, over all particles, we obtain the 

variations of beam emittances. For this purpose we need the 

distribution function of particles on the emittance space. 

2-c Distribution on the emittance space 

The distribution function on the emittance space will be 

obtained according to the following flow chart: 

Flow Chart 

P : distribution function in the real space at the cross section 
m 

p(z;s') =\ f(zJ~;s',dPg -no 

t 
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Namely the transformation into 

leads to the distribution function 

action-angle variables (J3,+3) 

(2-15) 

From Eq.(2-15), we can write the beam distribution function on the 

betatron emittance space tzat the cross section Q*of the torus 

(2-16) 

In the similar way, the distribution function on the 

longitudinal emittance space 

distribution function 

&CT, ; t) = 

is obtained. We write the 

as follows: 

(2-17) 

2-e Evolution equations for emittances 

Let us aerage the ,variation of emittances per revolution 

Eqs.(2-11),(2-12) over the distributions on the betatron and 

longitudinal emittance space. We write them as follows: 

Devide both sides of these equations by the revolution time To to 

obtain the differential equations 

(2-20) 
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This means that the electron cooling has Seen approximated as a 

damping force spread uniformly around the circumference of the 

ring. 

Then if we use the representations for the rate of change of 

the betatron and longitudinal emittances due to intra-beam 

scattering, as derived by Piwinski, we know the behaviour of the 

anti-proton beam through the equations 

(2-21) 

with 

To solve Eqs. (2-211, we have to rely on the aid of a computer. 

2-e Difference equations 

We can solve a set of time dependent equations by the Euler 
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method. If <Jx'),(J2) and (J,) are given at step n, namely 

(Jx:+, 1 dJ$, and lZs), ( a& ,cJ,>, and <Js), are defined as 

initial conditions), we wish to determine <JI), (Jy> and (Js) at 

step n+l. The simplest method is the Euler explicit first order 

with 

where At is the time-step. 

In the Euler method, the functions F,, F 3's F are evaluated only at 

time t,,, and hence the method is explicit and first-order accurate 

in the time-step At only. Investigation of the stability of the 

method is discussed in Appendix. Each of the functions Fz,FYand 

Fs includes two triple integrations, the first term corresponds 

the effect of electron cooling and the second to that 

intra-beam scattering. 

to 

of 

The first triple integration is calculated by a numerical 

method. We like to remark the following facts: the integrand has 
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a s t=no -\-i variation in the range of 0 < J 5 3(J) and we found that 

as cooling proceeds, <J> generally decreases by even more than an 

order of magnitude. Consequently, the mesh into which the 

emittance space (Jx ,Jy,JS) is subdivided must be dense in the 

neighbour of the proximity and adjustable. inside as cooling 

proceeds. The mesh therefore is chosen as follows: 

<J>/20 

<J)/lO (J) < J 5 2(J) 
AT= 

(J>/lO 2x5) < J $ 4(J) 

I (J--4(J>)/lO 4<J) < J 6 J,,(=5O(J>) 

The value of the integrand at the center of each cubic mesh is 

calculated, and multiplied by the volume of the corresponding 

cubic mesh. All the values so obtained are finally summed up. 

The CERN Program Library "TRIINT" has been used to calculate 

the triple integrals corresponding to the intra-beam scattering 

term in Eq. (2-21). Actually a CERN versio(n6'to estimate intra-beam 

scattering effects has been included in our own computer code 
Cl01 

"EVOLU". 

3. Results--- Application to the Fermilab electron cooling 

One may suppose that, as &cooling proceeds, the space charge 

force as the over-all effect of Coulomb interaction with other z“s 

becomes 'to affect on the behavior of an individual 

However, one must remind the following fact: although 

ring (200,400 MeV)--- 

particle. 

the beam 
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size shrinks b_~- cooling, the linear tune shift, which is regarded 

as the measure of the space charge force, does not change(See 

Appendix). Therefore, neglecting non-linear terms of the space 
C'tl 

charge force, one can consider the intra-beam scattering to be a 

dominant cause of beam blow-up. 

Through the above mentioned calculation, we have assumed that 

the beam always remains the Gauss distribution. Strictly 

speaking, the non-linearity in the large amplitude regions of the 

friction force may brake the Gauss distribution of the F beam at 

the early stage of cooling. In the present study, we belive that 

the difference from the exact Gauss distribution is a little even 

at the early stage, since the initial velocity spreads of the p 

beam are chosen to be smaller values than that of the e-beam. 

The parameters used in the present numerical calculations are 

listed in Table 1. Most of these parameters have been chosen in 

the design study of the Fermilab Electron Cooling Ring. But the 

relative spreads of the transverse and longitudinal velocities of 

the e-beam, that is, &and Behave not been known exactly yet. 

Therefore we used the values obtained empirically from cooling 

experiments which have been proceeded elsewhere so far. 

In Fig.20a-2-c, the solutions of difference evolution 

equations are shown as the function of time. As expected, beam 

emittances reach to an equilibrium state. And the behavior- of the 

emittance curves in the region, where the longitudinal emittance 

has the minimum value, can be interpreted easily by the fact that 

rapid damping of the momentum' spread enhances the intra-beam 
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ccattering at a streach. .- 

The solutions of evolution equations without the intra-beam 

scattering terms are shown in the same figure(Fig.2-a). We can 

not find a large difference between two cases at the early stage 

of e- cooling corresponding to the so-called e-fold time. We 

explain these results by the fact that the intra-beam scattering 

is dependent only upon the beam emittances. 

Furthermore, we write the time, when the system takes to 

reach the equilibrium state, and its equilibrium emittances, in 

the terms of %&and (<Jl)+d, (J\a'$~,<J~).+;& . So these values are 

plotted as a function of the electron beam current, in 

Figs. 2-d,2-e. 

Last let us refer to the dependence of .both effects, i.e. 

the intra-beam scattering and e-cooling, on the beam. energy by 

showing the numerical results for the beam energy of 400 MeV, in 

Fig.20e. The remarkable difference of '&,between both cases of' 

200 MeV and 400 MeV results from the dependence of the fric.tion 

force Fc upon the beam energy: Fc ti ( pY= 

Consequently, we conclude that the electron cooling technique 

has the limit. Considering an allowable accumulating' time and 

required beam emittances under the obtained results, one may 

choose the current density of the electron beam in a cooling ring. 
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zarameters of the lattice 

Betatron amplitudes 

Cooling region length 1 = 10 m 

Parameters of the electron beam 

Electron current density Je= . 2--l.A/cm' 

Relative spread of e-beam velocity 8 I= 2.*10°3 

et,= 1. *lo-+ 

Coulomb log. L = 15 

Parameters of the anti-proton beam 

Number of accumulated F N = 1.5*10H 

Beam emittances for transverse <&>,<r,,= 7.*10+ 

(this value is corresponding to /?rbearn emittance of 

42Km-mrad) 

Momentum deviation <r,)z& 1. *lo+ 

Beam energy E= 2000400MeV 
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AppeCix 

A-l Stability of the Euler Method 

To investigate the stability of the method, it is assumed 

that a small error, (,, , exists at step n and we question how the 

error is amplified to step n+l. To do so, the difference equation 

, so that 

Here, 
m we can define the amplification factor of{ 

a = 1 -I- ;g(h.*t 

The stability condition is Igl61. Clearly 

eqations 
aI= . 99 !L 

so 

(A-2 1 

the error 

(A-3 1 

, for our evolution 

where ?cis the instantaneous damping time due to electron cooling 

and ?L is the instantaneous rising time due to intra-beam 

scattering. The stability condition is satisfied if the time-step 

At is sufficiently smail such that 

(A-4 1 

The values of the right-hand side of Eq.(A-4) at the cooling stage 

are summarized in Table 2. 
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Table 2 

L c early times euilibrium state 

?i-% I several seconds 
I 

In the present studies, At=5*lo3 seconds has been chosen, as a 

reasonable value. 

A-2 Linear tune shift due to space charge force of ?? beam 

We consider the F beam with the beam size of the diameter a 

and b for horizontal and vertical, corresponding to J26 beam. 

The first order terms of the space charge potential are 

described as follows; 

(A-5) 

where r P is the classical radius of an antiproton, yO is the line 

density, p and S are the relativistic quantities, and e is the 

unit charge. 

The effect of the potential Eq.(A-5) on the betatron oscillations 

is equivalent to a quadrupole magnet. Therefore it causes the 
c91 

so-called linear tune shifts. We can derive easily this linear 

tune shifts, 

A3, = cabrp 
we 

(A-7) 

As we can assume a=b, we know that, although the beam size 

shrinks , the linear tune shifts Eqs.(A-G),(A-7) do not change. 



17 

References 

TM-1046 

(‘I 'I The Fermilab Antiproton Source Design Report ", Fermilab, 

April (1981) 

(2) K. Takayama, " On an Invariant of a System affected by 

Intra-Beam Scattering 'I, FN Note 3.36,. (1981) 

(3) T. Ogino and A. G. Ruggiero ' The Physics of Electron Cooling ", 

Fermilab Internal Report, (1979) 

(4) A. Piwinski, 'I INTRA-BEAM SCATTERING 'I, Proc. 9th Int. Conf. 

on High Energy Accelerator, p. 405 (1974) 

(5) These second order terms would cause the p beam to reach an 

equilibrium with the e beam temperature. We expect this- to 

be cosiderably smaller than the intra-beam scattering effects. 

(6) Private communication from D. Mijhl (1980) 

We understand the CERN program "INTBMS" was written 

by F. Sacherer. 

(7) B. W. Montague, CERN 68-38, p. 64(1968) 

(8) D. E. Potter, II DIFFERENCE SCHEMES AND NUMERICAL ALGORITHMS ", 

Proc. Computing as a Language of Physics, IAEA, VIENNA, 

p.57 (1972) 

(9) K. Takayama, "Difference Resonance Theory and Application 

to KEK P.S.", KEK Internal Note (1978) 

(10) K. Takayama prepared the computer code. 



- 18 - 
TM

-1046 

“0 
4 

I 

2 > . I ‘) I I I I I ! . 



- 19 - TM-1046 

__ _ .__ Le..-- 
- .  --- _-.-.. 

< ,-:.-; =...  f_.TT+.- ..-=. . :- .  L. -.. 
-. -_-__ 

-- --_I-- .- ----_ ..- _ 



- 20 - TM-1046 

t-b- _--- -. _ .__-. :: __. :-.:-..: -: ____ .___ - .- _-_- __ ..:I . _,____ :. - ._..-.-.- . -‘. - --- ___-___ -. - .- .. --- ------ .- -. 
1e5! L--.2 .__,__._..__.___ -_ -...-.Exq2~~ b. _.. ._-._ . - . 

___. ~ -___ ____ 

,k- --.-. 

CJ __-_.- .--. -.-- _--. 

___- ---_-___---- ______ ____. __ __ ._ __ _ .___._ . . _.. ^. .~ _.- - 

-.- . ____-.d .e-.--- ___-___-._ _.. -.. - - 

_ .- ._. L- _--- -__. -- --- _____ ___..____. -.-..-- __--.. _. .-. Ji 4.6 A/cm2 



- 21- TM-1046 

._---__ ..~ - ._. _.. ..-. 
-._ 

-- - ..c--.--- --___-. 

--m-c 

- 
I I I 



TM-1046 

Li 

20 

18 

16 

14 

12 

I - - 
I I, PI-:! I 

,8 

6 

4 

2 

l 6 7.0 Al/cm= 



- 23 - 

Fig.3 

TM-1046 

PhaserDisplacement 

: : 
: : 

c 
: : 
l ,. ” l 

: : 
l l 

l 

: 
: 
. 

. 
l : 

l 
3  

: Phase Flow : 



TM-1046 

Fig.4 
Non-Adiabatic Variation of Eon-Linear System (Simple Model) 

Consider the infinite sequence of 
with the initial condition: 

a+ 

rz Q 

phase points 

, 
1 

60 

\ t 
t3 t+ 

I ,  

t ,s  t  <tt 

As: Effective Spread of Phase Points 



Table 1 

Transfer Matrix 

- 25 - 
TM-1046 

M = 

; i I ; I 

; ;“” ; 1 I 1 1 ’ 
.’ 1 I 

t i i 

; ; 1 1 
I I 1 I 

I 1 I 1 ---a -8.884 

-- 82 

w-w- 

---- 

-m-s 

s--e 

- - -- 

-- -4. 

‘20 n8 133 
I-- se- 

/83 680 63 
I----- 

J% vs 27 

I I 1 

- ---- 

23 930 7 

! 
. --e-_ 

7 979 /Y 
- -aA\ 

1s 4’76 9 

----- 9 986 $ 
-- --- 

Y 94’t L -- -- 

- - -- 

7r. 

70 

69 

66 

69 

62 

60 

so 

56 


